Optimizing Injection Molding Parameters of Different Halloysites Type-Reinforced Thermoplastic Polyurethane Nanocomposites via Taguchi Complemented with ANOVA
نویسندگان
چکیده
Halloysite nanotubes-thermoplastic polyurethane (HNTs-TPU) nanocomposites are attractive products due to increasing demands for specialized materials. This study attempts to optimize the parameters for injection just before marketing. The study shows the importance of the preparation of the samples and how well these parameters play their roles in the injection. The control parameters for injection are carefully determined to examine the mechanical properties and the density of the HNTs-TPU nanocomposites. Three types of modified HNTs were used as untreated HNTs (uHNTs), sulfuric acid treated (aHNTs) and a combined treatment of polyvinyl alcohol (PVA)-sodium dodecyl sulfate (SDS)-malonic acid (MA) (treatment (mHNTs)). It was found that mHNTs have the most influential effect of producing HNTs-TPU nanocomposites with the best qualities. One possible reason for this extraordinary result is the effect of SDS as a disperser and MA as a crosslinker between HNTs and PVA. For the highest tensile strength, the control parameters are demonstrated at 150 °C (injection temperature), 8 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and mHNT (HNTs type). Meanwhile, the optimized combination of the levels for all six control parameters that provide the highest Young's modulus and highest density was found to be 150 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 3 wt % (HNTs loading) and mHNT (HNTs type). For the best tensile strain, the six control parameters are found to be 160 °C (injection temperature), 8 bar (injection pressure), 32 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and mHNT (HNTs type). For the highest hardness, the best parameters are 140 °C (injection temperature), 6 bar (injection pressure), 30 °C (mold temperature), 8 min (injection time), 2 wt % (HNTs loading) and mHNT (HNTs type). The analyses are carried out by coordinating Taguchi and ANOVA approaches. Seemingly, mHNTs has shown its very important role in the resulting product.
منابع مشابه
Optimization of Injection Molding Parameters for HDPE/TiO2 Nanocomposites Fabrication with Multiple Performance Characteristics Using the Taguchi Method and Grey Relational Analysis
The current study presents an investigation on the optimization of injection molding parameters of HDPE/TiO₂ nanocomposites using grey relational analysis with the Taguchi method. Four control factors, including filler concentration (i.e., TiO₂), barrel temperature, residence time and holding time, were chosen at three different levels of each. Mechanical properties, such as yield strength, You...
متن کاملOptimization mechanical properties of polyurethane/Sio2 nanocomposite on Polypropylene substrate for automotive clear coating by Taguchi method
The effect of different parameters including: nano silica content, curing temperature, type of hardener, and flash-off time on mechanical and optical properties of polyurethane PU based clearcoat was investigated via standard Taguchi L9 method. Dispersion of nano silica in the resultant nanocomposites was explored by scanning electron microscopy SEM. SEM images showed a fine dispersion through ...
متن کاملA Study of the Effect of TPU and Clay Nanoparticles on the Mechanical Behavior of PBT-Based Nanocomposites
In this research, thermoplastic polyurethane (TPU) and clay nanoparticles were incorporated into poly (butylene terephthalate) (PBT) to improve the impact and tensile properties. The PBT/TPU (90/10, 80/20 and 70/30) samples were prepared by melt mixing using a co-rotating twin-screw extruder followed by injection molding. At the next stage, clay nanoparticles of different weight fractions were ...
متن کاملFiber Orientation in Injection Molded Long Carbon Fiber Thermoplastic Composites
A set of edge-gated and center-gated plaques were injection molded with long carbon fiber-reinforced thermoplastic composites, and the fiber orientation was measured at different locations of the plaques. Autodesk Simulation Moldflow Insight (ASMI) software was used to simulate the injection molding of these plaques and to predict the fiber orientation, using the Anisotropic Rotary Diffusion an...
متن کاملOptimization simulated injection molding process for ultrahigh molecular weight polyethylene nanocomposite hip liner using response surface methodology and simulation of mechanical behavior.
In this study, injection molding process of ultrahigh molecular weight polyethylene (UHMWPE) reinforced with nano-hydroxyapatite (nHA) was simulated and optimized through minimizing the shrinkage and warpage of the hip liners as an essential part of a hip prosthesis. Fractional factorial design (FFD) was applied to the design of the experiment, modeling, and optimizing the shrinkage and warpage...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2016